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Background

The Cognitive Science Laboratory of USC has a subcontract with the Center for

Technology Assessment of the UCLA Center for the Study of Evaluation to assist in the

evaluation of expert systems using a human benchmarking methodology. In turn, UCLA

has an existing contract with the Defense Advance Research Projects Agency to study

methodologies for the evaluation of artificial intelligence systems. UCLA systems of

interest in artificial intelligence have included vision, natural language, expert system

shells, and expert systems. The purpose of the current subcontract is to assist in the human

benchmarking of experts systems.

Benchmarking is defined by Guralnik (1984, p.131) in the following manner:

"(1) Surveyor's mark made on a permanent landmark of known position and altitude, used

as a reference point in determining other attitudes, (2) standard or point of reference in

measuring or judging quality." Benchmarking is also used as a term to denote a standard

process for measuring the performance capabilities of software and hardware systems from

various vendors (Bentwell, 1974; Letmanyi, 1984). It is the latter sense that we use

benchmark!ing: Thus, human benchmarking is an evaluation procedure by which an AI

system's performance is judged based on a sample of people's performance on tasks with

psychological fidelity.

There are two major human benchmarking alternatives: computer science driven or

psychological process driven. The computer science driven approach is either (1) expert

system driven in which one picks an expert system which encodes an expert, derives

psychological processes, and tests the processes with peoplc; oi (2) expert system shell

driven in which one estimates the "intelligence" of the shell (parent), assumes that applied

expert systems will have similar "intelligence," then follows the procedures of the expert

system driven approach.



The second alternative for human benchmarking is psychological process driven in

that one picks a psychological process, finds an expert system that exemplifies the process,

and then tailors a test for the expert system and a test using people. For us, the

psychological process approach was not feasible due to a constraint of available Al

developers with robust programs who were willing to collaborate with us. Thus, we chose

the computer ,cience driven approach. In turn, because our effort is focused on expert

systems we chose this sub-approach rather than focusing on shells.

In order to provide an intellectual foundation for human benchmarking, a literature

review was conducted and documented as a prior deliverable (O'Neil, Ni, & Jacoby,

1990). The literature was reviewed from two viewpoints: (1) a computer science and

software engineering perspective and (2) a cognitive science perspective with a focus on

psychological assessment.

This literature review suggests that there are different approaches to expert system

evaluation including evaluation criteria and evaluation procedures. The literature offered

diverse environments to capture developmental aspects of expert systems evaluation. The

review suggests the possibility of developing a psychometric standard for the evaluation of

expert systems; the review also helped us to document similarities and differences between

cognitive psychology and artificial intelligence, which is important for our human

benchmarking approach. Further, it suggested multiple frameworks useful for assessment.

For example, O'Keefe, Balci, and Smith's (1987) methods of validation of an

expert system attempt to capture the whole developmental process for expert systems (see

Table 1). They categorized validation methods as qualitative and q'iantitative. These

validation methods are described in Table 1. In Table 1, all methods are qualitative except

the last. The face validation and the predictive validation methods are preliminary

approaches to validation during the development of the system. Turing tests and field tests

2



are validation methods used after the installation of the system. Others are validation

methods applicable both during and after the implementation of the expert system. Many of

these techniques depend upon test cases.

Table 1
Methods for Validation Evaluation

(Adapted frm O'Keefe et al., 1987)

Method Description

Face validation Preliminary comparison of system performance
with expert performance against a prescribed
performance range

Predictive validation

Assessment of performance by using historic cases
and either (1) known results or (2) measures of
human expert performance on these cases

Turing test Expert judges' blind evaluation of both system and
human expert performance for given cases

Field test Evaluation of prototypical expert system in the
intended context

Subsystem validation Decomposition of subsystems in an expert system
and evaluation of the performance of each
subsystem under given input data

Sensitivity analysis Validation of system by systematically changing
expert system input variables and parameters over
some range of interest and observing the effect on
system performance

Visual interaction A validation environment in which the experts' direct
interaction with an expert system allows for face
validation, sub-system validation, and sensitivity
validation

Quanti,:i",e validation Statistical techniques to compare expert system
performance against either test cases or human
experts
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However, the test cases in many studies cited in the literature either were generated

by an expert or experts in correspondence with his or her perceived pre- specification for a

system or previously used examples in evaluation of similar systems. The

represciltanivcness of the cases seems to be problematic because the test-case generation

technique relies only on the experts' arbitrary judgments which vary across situations and

over time. In fact, the representativeness issue occurs during the process of expert system

development. The domain knowledge coded in an expert system is usually extracted from

one or two experts in the field. However, there is great variation in domain experts for a

given problem. Even the same expert may change his solution methods for the same

problem over time. Thus, using only prespecifications as evaluation criteria and a very

small sample of test cases make the representativeness of the test cases uncertain. The lack

of representation would, of course, reduce the validity of the methods specified by O'Keefe

et al. (1987).

UCLA/USC personnel have been engaged in developing a model for the evaluation

of expert systems for the past year. This ongoing project has resulted in a detailed

characterization of the development process in terms of stages of development, evaluation

considerations, and knowledge engineer question types throughout the process.

Documentation has been compiled in a case study methodology on some differences

between traditional software and artificial intelligence systems in the development process

with changes in project organization, size, and purpose; application type; knowledge of

programming environment; and personnel attributes. These differences have implications

for the complexity of a development model as well as the kind, purpose, and timing of

measurements that might be made during the development (Slawson 1987; Slawson,

Hambleton, & Novak, 1988).
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Our human benchmarking approach is to establish an evaluation, that is, to norm an

expert system's performance on a sample of people's performance. The implication of this

approach is that it goes beyond the conventional approach of expert system evaluation and

aims to build psychometric criteria through comparison of an expert system's performance

with differentiated performances by people.

The basic idea of a human benchmarking approach is to use people's

performance(s) to evaluate an artificial intelligence system. Following this line of thought,

there are three methods for the approach. They are (1) the Turing test, (2) comparison of

the system's performance with persons' performance of different expertise in the same

field, and (3) evaluation of the system's performance against a norm generated from the

assessment of performance by groups from both inside and outside the relevant field.

These methods differ in their samples of people and their evaluation criteria. The sample of

people in the Turing test is only the expert group; in the second method, the sample

includes people with different levels of expertise in the same field. In the third method,

both experts and nonexperts comprise the sample from both inside and outside the relevant

field. In terms of evaluation criteria, the first two methods usually use prespecifications for

a system as evaluation criteria, while the third uses psychometric-oriented criteria generated

from test specifications based on a structural analysis of a domain task. Due to the features

in the sample of people and the evaluation criteria, the third method appears to have a

potential generalizibility which may lead to directly evaluating a system's "intelligence" and

carrying out comparisons among similar or even different kinds of systems. It is this

methodology that we are attempting to explore.

The function of norms is to help establish the status of the expert system

performance. For example, monitoring is a conscious, cognitive function which is directed

at the acquisition of information about the status of ongoing problem-solving processes. If
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0% of 4th graders can monitor and 100% of undergraduate students can monitor

effectively, then an expert system with monitoring as its major function exhibits the

"intelligence" of no greater than an undergraduate student. Subsequent research would

investigate 5th graders through college seniors to get a range of equivalent intellectual

functioning by the program. Norms are differential estimates in the research literature. For

example, on the Stanford-Binet intelligence test, norms are percentages passing a task by

grade level. With standardized tests, the process varies. For instance, raw scores on the

Iowa Test of Basic Skills are converted to either developmental scores (grade equivalent,

age equivalent, and standard scores) or status scores (e.g., percentile ranks)

(Hieronymous, Hoover, & Lindquist, 1986).

1-alIy. one could evaluate the performance of a system against human

developmental data. For example, the data from developmental psychology suggests that

classification in terms of function of objects is viewed as a higher level than classification in

terms of the objects' shape or color (e.g., Bruner, Olver, & Greenfield, 1966). For

example, young children view three black cats similarly merely because all of them are

black. Older children, on the other hand, treat them as a group because they belong to the

same kind of animal, i.e., cats. Thus, the same judgment may be made in expert system

applications. It may be appropriate to say that a system doing function classification is

"smarter" than that doing shape or color classification although both carry out the same

classification function in a technical sense.

While investigating the current state of the art in evaluation of expert systems, we

located a large number of studies that either dealt with expert system evaluation or included

evaluation as one component of expert system development. The literature (O'Neil et al.,

1990) also included a subset of the following domains: (a) metacognitive skills (e.g.,

monitoring skills); (b) qualitative and quantitative methodologies; (c) software engineering;

and (d) intelligent tutoring systems. Based on this literature review, the UCLA/USC team
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is focusing on the modification of the "human benchmarking" methodology from the

natural language area and applying it to the area of expert systems.

Modification of Human Benchmarking Methodology

for Expert Systems

A human benchmarking approach was initially apphed to a natural language

understanding system (Baker & Lindheim, 1988; Baker, Turner, & Butler, 1990). To

extend it to the evaluation of expert systems, we modified this method by relating cognitive

psychological taxonomies to an expert system taxonomy (e.g., monitoring). With this

bridge, we developed measures for groups of people to allow us to benchmark an expert

system.

Natural Language Application of Human Benchmarking

The human benchmarking method has been preliminarily explored in the evaluation

of a natural language system (Baker & Lindheim 1988; Baker et al., 1990). The authors

defined human benchmarking as assessing an artificial intelligence system in terms of

similar performance by groups of people.

A natural language understanding system, IRUS, was selected as the target for the

human benchmarking approach. IRUS is an interface which has natural language facility

and allows a user to access a database through a natural language by asking questions. A

sample of IRUS queries was collected from a list of 163 queries that were used in an

August 1986 Navy demonstration of the capabilities of IRUS (Baker et al., 1990). A

linguistic analysis of these queries served as the basis of test specifications for the

development of the Natural Language Elementary Test (NLET). The NLET test was
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designed to duplicate the queries that the system, IRUS, was able to understand. Sentence

types IRUS was able to handle became the test specifications for NLET. By mediation of

the test specifications, the NLET test is "equivalent" to IRUS in linguistic functioning (see

Table 2).

Table 2

Example NLET Form 3 Items and Parallel IRUS Queries by Item Type

(Adapted from Baker et al., 1990)

IRUS Query Linguistic Structure NLET Item

Does FREDERICK have TASCOM? Noun Phrase (NP) + Verb + NP Does the dog have a hat?

Display all carriers in the PACFLT. Perfoi.nance Verb + NP Point to the car with a flag.

What's HAMMOND's readiness? NP + Copula + NP Who is the driver of the truck?

How many cruisers are in WESTPAC? NP + Verb or Copula + Prepositional Phrase How many striped snakes are on the floor?

List the ships that are C4 or that are C5. Performance Verb + NP + Relative Clause Point to the cars that have a flag or that
have stripes.

Are there any submarines in the South China Non-referential "there" + Copula + NP Are there any snakes in the house that are
Sea? striped?

The NLET test has 39 items of these linguistic structures. The reliability of the test

among its items has not been established because there are several sets of items that are

constructed depending on preceding items. The NLET test was administered to two groups

of students including kindergarteners and first graders. In principle, IRUS would be rated

as first grade le, cl of natural language understanding in a syntactic sense if 90% of first

graders could understand all or most of NLET items. However, the human benchmarking

approach was designed to "norm" performance of Al systems with differentiated

performances by groups of peopl.-. Therefore, a standardized test was needed so that a

score of NLET could be interpreted or equated in a score of a standardized test. Then, it

would be possible to "norm" performance of Al systems. Thus, the language section of

the Iowa Test of Basic Skills (ITBS), a standardized test, wa. used in the human

benchmarking study.
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It was expected that the first graders would perform better than the kindergarteners

on both NT ET ard ITBS tests. This continuation then could be used as a "scale" to

measure performance of IRUS. But the results showed that these two groups'

performance was similar on both tests. However, there was a developmental trend in their

NLET performance when the subjects were grouped according to their grade equivalent

scores on the ITBS standard language ability test (see Table 3). This suggested that the

human benchmarking approach could be further specified with more groups of students.

Table 3

NLET Test Descriptive Statistics for ITBS Grade-Equivalent Bands

(Baker et al., 1990)

ITBS Grade
Equivalent N NLET Mean NLET SD NLET Range

3.4-4.9 17 34.47 2.27 31-38

2.0-2.9 20 32.85 1.57 29-35

1.0-1.9 37 32.59 1.97 22-37

K.0-K.9 42 32.00 2.95 26-37

P.0-P.9 10 30.60 3.20 26-35

The natural language i- iman benchmarking methodology relies heavily on domain

referenced testing as its central metaphor. The equivalence between IRUS queries and

NLET items was determinei in terms of syntactic structures alone.

However, one expects that human benchrnarking of expert systems would be

different than human benchmarking of natural language understanding systems. First, an
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expert system always involves a considerable amount of domain-specific knowledge; thus,

unlike natural language systems, it is difficult to isolate the structure of a task from its

content for test specifications. For example, assigning airline flights to airport gates needs

specific strategies as well as knowledge about the airport. In addition to capturing the

requirements of domain-specific knowledge for a given task, one needs to take into

consideration measurement of relevant experiences in human benchmarking of expert

systems. For example, travel experience and scheduling experience would be relevant if

one is to assign airline flights to airport gates.

Thus, as expected, we modified the methodology designed for an NL application

by augmenting it with metaphors and methodologies from the metacognitive skills

literature. The basic idea was to map the methodologies and measures of human

monitoring skills (e.g., Beyer, 1988; Weinstein & Mayer, 1986) onto expert systems in the

area of scheduling. In order to achieve this goal we required a measuring instrument to

measure human cognitive skills, something analogous to NLET in the natural language

area. Our preference was to select a reliable and valid commercially available instrument

from the literature. Thus, our literature review (O'Neil et al., 1990) also focused on

cognitive skills instruments.

Explicit Measurement of Cognitive Skills

The search for cognitive skills instruments was intended to assist us in the

measurement aspects of a "human benchmarking" approach to the evaluation of expert

systems. The work began by investigating several cognitive and metacognitive skills, that

is, monitoring, problem solving, reasoning, inference, planning, diagnosis, and

scheduling. The selection reflected the combined perspectives from cognitive psychology

and expert system applications. For example, "problem solving," "reasoning,"

"inference," "monitoring" and "planning" were considered because they are almost the
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same labels in expert system applications and cognitive psychology, whereas "diagnosis"

and "scheduling" are from categories that are unique to expert system applications.

Monitoring. As a general human executive process, monitoring is directed at the

acquisition of information about and the regulation of one's own ongoing problem solving

processes, which is described as "cognitive monitoring" by Flavell (1981),

"metacognition" by Sternberg (1985), and "executive decision" by Kluwe (1987). Thus,

one monitors the internal world (i.e., one's thoughts). However, monitoring as an

executive process can also use information from monitoring one's thoughts of the external

world (e.g., a display).

One possible positive effect of the monitoring function is the ease with which

cognitive strategies are transferred to new task demands (Kluwe, 1987). However,

frequent monitoring does not necessarily lead to successful performance (Kluwe, 1987).

Successful performance is not determined only by the monitoring function: there are

interactions between the monitoring function and other cognitive skills as well as prior

experience and knowledge. For example, effectiveness of monitoring may be influenced

by task proficiency. Hickman (1977) interviewed two widely read professional persons,

asking them to reflect upon their own comprehension processes while reading. Their

comments demonstrated a clear sense of purpose for reading, a very active use of

identifiable strategies, and an emphasis on relating prior experience and knowledge to

materia! read. Unfortunately, we were not able to find a commercially available instrument

for the measurement of monitoring.

Planning. Planning, in cognitive psychology, is viewed as a general cognitive

skill or as a context-specific activity (Scholnick & Friedman, 1987). As a general cognitive

skill, it is defined as the predetermination of a course of action aimed at achieving a goal

(Hayes-Roth & Hayes-Roth, 1979); it is also considered as a series of subfunctions of
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metacognition, e.g., stating a goal by predicting results (Beyer, 1988). As a context-

specific activity, it emphasizes context-specific strategies such as reading comprehension,

running a series of errands, etc. (e.g., Jacobs & Paris, 1987; Boynton, 1986). Our

literature review indicated no commercially available instruments to measure planning.

Diagnosis and Scheduling. As mentioned above, diagnosis and scheduling are

from the categories of expert system applications. There are no such categories in cognitive

skills and thus no measures.

Table 4 summarizes the concepts from an artificial intelligence and cognitive

psychology perspective. After an extensive literature review we found no standardized

measurement instrument of any construct in Table 4.
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Table 4

Monitoring, Planning and Scheduling

AI Psychology

Monitoring Monitoring

Monitoring observed behavior of a system As a cognitive executive process directing at
to examine whether the function of a system monitoring (e.g., self checking one's own
is deviant from expected behavior, ongoing cognitive process. (Steinberg,
(Waterman, 1986) 1985; Flavell, 1981; Kluwe, 1987)

Planning Planning

A problem-solving strategy which is A problem-solving strategy which is
defined as the predetermination of a course defined as the predetermination of a course
of action aimed at achieving a goal (Hayes- of action aimed at achieving a goal (Hayes-
Roth & Hayes-Roth, 1979) Roth & Hayes-Roth, 1979)

Deciding on an entire course of action
before acting, such as develop a plan for
attacking enemy airfields (Waterman, 1986)

Diagnosis Diagnosis

The process of fault-finding in a system Not a specific research area.
based on interpretation of potential indicator
data (Hayes-Roth, Waterman & Lenat,
1983)

Scheduling Scheduling

Selecting a sequence of operations needed Not a specific research area
to complete a plan, determines start and end
time, and assigns resources to each
operation (Waterman, 1986)

Alternative Measurement of Metacognition

Although there are no commercially available standardized tests for the

measurement of metacognition, cognitive researchers have designed and used various
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approaches to measurement. Usually one infers the presence or absence of metacognition

by some sort of experimental variation. The techniques for measurement of metacognition

in empirical studies may be categorized into five kinds. The following are examples of

these methods.

Error detection paradigm. This method involves constructing reading material

with contradictory information. If the inconsistent information goes undetected, it is

assumed that the reader has failed to monitor his or her level of comprehension adequately.

This method is mostly used in the measurement of reading comprehension monitoring. A

short passage is provided to a subject which contains a single contradiction. The

contradictory information is usually not in contiguous sentences. For example, one

passage describes cave-dwelling bats that are deaf; toward the end of the passage it is stated

that the bats use echoes to locate objects (e.g., Walczyk & Hall, 1989). The subject is

asked to detect the contradictions. The number of correct detections is used as an index of

reading comprehension monitoring. Higher numbers indicate more monitoring.

Self-rating scale. This type of measurement involves asking participants to

answer or self report on statements about metacognition. For example, the reading

awareness interview was designed to assess children's awareness about reading in three

areas: evaluating task difficulty and one's own abilities, planning to reach a goal, and

monitoring process towards the goal. The interview contained scale items (Jacobs & Paris,

1987). For example, one monitoring item is "Why do you go back and read things over

again?" with three scored choices: (a) because it is good practice (one point); (b) because

you didn't understand it (two points); (c) because you forgot some words (0 points).

Another example is learning strategy inventories (e.g., Weinstein & Mayer, 1986).

Think-aloud protocol analysis. Think-aloud protocol analysis is a

psychological research method. It asks a subject to vocalize aloud his or her thinking
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processes while he or she is working on a problem. The data as a protocol are then coded

according to a specified model for psychological analysis which provides insights into the

elements, patterns, and sequencing of underlying thought processes (Erission & Simon,

1980). Hayes-Roth and Hayes-Roth (1979) and Boynton (1986) used this method to

study cognitive processes of planning. For example, their studies suggest that monitoring

and self-checking are important components of planning.

Another example of think-aloud protocol involves subjects working in pairs to

solve a problem. Their verbal statements during the problem-solving period are collected

and examined for metacognition involved in the process. For example, pairs of subjects

were asked to solve LOGO programming problems (Clements, 1987). While they were

solving LOGO problems, their verbal statements were either tape recorded or videotaped.

The experimenter would stimulate verbalization if needed. Verbatim transcripts were

prepared. The subjects' recorded statements were categorized in the scheme of Stenberg's

componential intelligence model (1985) such as deciding on the nature of the problem,

selecting performance components, combining performance components, monitoring

solutions, etc. For each subject, the number of statements in a given category divided by

the total number of statements yielded a percentage of occurrence for that category. The

sum of the four variables mentioned above defined the metacomponential processing score.

The results showed that correlations between the metacomponential processing score and

performance on error detection was positive and significant.

Evaluating relative efficacy of strategies used. This method is used to

assess subjects' awareness of effectiveness of strategies used. The underlying assumption

is that one aspect of metacognition is to monitor strategies for use in the regulation of

ongoing cognitive activity. For example, two memory strategies were provided to subjects

when they were asked to remember a list of vocabulary. Then they were asked to evaluate

the relative efficacy of the strategies according to their memory experience (Brigham &
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Pressley, 1988). It was assumed that awareness of task-appropriate strategies facilitates

success.

Behavior observation. It is expected that changes in problem solving

condiions would result in changes in cognitive processes that would be, in turn, reflected

in overt behavior measures such as speed. For example, subjects were requested to solve

puzzles under reversible and irreversible conditions (the irreversible condition being that

once a piece of the puzzle was placed on the working cardboard it became fixed and could

not be removed). Changing the problem solving condition would cause children to

increase their intensity and thus decrease the speed of their solution approach. The change

of actions was viewed as the evidence of monitoring their problem solving processes

(Kluwe, 1987). The "data" in this case are not the subjects' cognitions but their overt

external behaviors. In Kluwe's study, some children tended to increase checking

behaviors such as holding in hand a piece of the puzzle longer or trying several pieces of

the puzzle elsewhere rather than putting them directly on the working cardboard.

Cognitives and Expert System Taxonomies

In order to compare the functioning of both software and persons, one requires

some classification (or taxonomy) to categorize particular cases as instances of more

general constructs. Then one can measure comparable ft.,ictioning at an appropriate

abstract level. Only when a particular category or function of an expert system is identified

to be parallel to a particular type of cognitive functioning, can the decision be made that the

particular measuring instruments are legitimate to be used for comparing the performance of

expert systems and that of human beings. Both general and specific approaches were used

to accomplish this task.
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Our general appro&h used two category systems (or classifications/taxonomies) of

expert systems (Chandrasakaran, 1986; Shalin, Wisniewski, & Levi, 1988). Their

possible correspondences were examined based on the descriptions or definitions of the

categories or functions of expert systems and cognitive skills.

As shown in Table 5, Shalin et al.'s system (1988) categorizes expert systems

according to their functions and knowledge requirements. These five categories are

classification, interpretation, design as well as problem solving and planning. They are

described as hierarchically inclusive because the functions and the knowledge requirements

for more complex expert system functions subsume requirements for less complex expert

systems. Chandrasekaran's system (1986) identifies four critical functions or features

called "generic tasks." The five critical functions are hierarchical classification, hypothesis

matching or assessment, abductive assembly, hierarchical design by plan selection, and

state abstraction. The "generic task" analysis seems to be more able to capture similar

functions from different expert systems because it focuses on general functions of expert

systems rather than specific tasks they perform, which is consistent with to our approach in

benchmarking expert systems.

However, the function of human cognitive monitoring and expert system

monitoring may differ in that human cognitive monitoring regulates on-line cognitive

processes of problem-solving, while a monitoring system does an on-line task such as

weather monitoring, etc. It may be in this sense that Shalin et al. (1988) viewed the

function of a monitoring system as similar to that of a classification system which functions

so as to match the input features of an example of a class to a concept or its internal

representation of the class. Thus, the functions of cognitive monitoring and an expert

system monitoring something external are not the same thing. Although the same word is
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used, "monitoring" does not mean the same thing in expert system applications and

cognitive psychology.

Table 5
Expert System Function Classification

Shalin et al. (1988)

Classification
Matches the input features of an exemplar of
a class to a concept

Interpretation
Construct a coherent representation from
classified objects

Design
Arranges objects according to constraint on
these objects

Problem-solving and planning
Arranges actions according to constraints on
action sequences

Chandrasekaran (1986)

Hierachical classification
Organize concepts in terms of their relations
with the top-most concept having control
over the sub-concepts

Hypothesis matching or assessing
Generate a concept, match it against relevant
data, and determine a degree of fit

Hierarchical design by plan
selection and refinement

Choose a plan based on some specification,
instantiates and executes parts of the plan,
which in turn suggests further details of the
design

State abstraction
Predict a state change when a proposed
action may be executed
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In order to be clear about the meaning of monitoring one needs to define the

construct of self-monitoring in human terms. Our definition of this construct is a synthesis

of Weinstein and Mayer (1986) and Bayer (1988) (see Table 6). We view self-monitoring

as conscious and periodic self-checking of whether one's goal is achieved and, when

necessary, selecting and applying different strategies. Thus, to self monitor one must have

a goal (either assigned or self-directed) and one must have a cognitive strategy to monitor

(e.g., finding the main idea). Further, one needs a mechanism to know which strategy

among competing strategies to initially select to solve a task and, further, when to change

such a strategy when it is ineffective in achieving the goal. A problem arises when one's

initial cognitive strategy is ineffective but there is no other strategy to select. The latter case

is common with lower aptitude students. For example, many low aptitude students

memorize information by repetition alone and have no other strategies to use when

repetition is inefficient or ineffective. Thus, although conscious of failure, they have no

other strategy to select and use (e.g., use of imagery). Surprisingly, the cognitive term of

self-monitoring finds its best realization in the expert system application of scheduling.

The typical goal of an expert system scheduler is to assign an item to a specific

time, location, etc., without violating any constraints. The scheduler makes assignments

according to some prescribed strategy such as the number of constraints assigned to the

item or the distance among items. If an expert system's initial strategy fails to assign all the

items, then the program must either relax its constraints or adopt a new and different

strategy (Dhar & Raganathan, 1988). Similar to the human example, a more sophisticated

and complex expert system should be able to select a different scheduling strategy if its

initial strategy proves ineffective.
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Table 6

Metacognition Taxonomy (adapted from Beyer, 1988)

Planning

--Stating a goal

--Selecting operations to perform

--Sequencing operations

--Identifying potential obstacles/errors

--Identifying ways to recover from obstacles/errors

--Predicting results desired and/or anticipated

Monitoring

--Keeping the goal in mind

--Keeping one's place in a sequence

--Knowing when a subgoal has been achieved

--Deciding when to go on to the next operation

--Selecting next appropriate operation

--Spotting errors or obstacles

--Knowing how to recover from errors, overcome obstacles

Assessing

--Assessing goal achievement

--Judging

--Evaluating appropriateness of procedures used

--Assessing handing of obstacles/errors

--Judging efficiency of the plan and its execution
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Our specific approach using cognitive and expert system taxonomies investigated

two software systems-GATES and ART. ART (Inference Corp., 1987) is an expert

system shell. GATES (Brazile & Swigger, 1988) is an expert system designed to assign

airplanes to gate at airports.

Expert system shell-ART. ART was chosen for analysis because (1) it is a

versatile tool that incorporates a sophisticated programming workbench in common use;

and (2) we have expertise immediately available in ART, as one member of our research

group had extensive experience with this shell.

ART consists of several components: facts, schemata, viewpoints, logical

dependencies, rules including forward chaining and backward chaining, object oriented

programing, and graphics. The first six components were examined for their possible

parallels to cognitive skills. The result of the analysis is depicted in Table 7.

As shown in Table 7, a fact in ART is conceptualized as declarative knowledge in a

cognitive taxonomy, and the feature of the schemata component in ART is identical to that

of the schema description in cognitive psychology (Rumelhart & Ortony, 1977). The

forward chaining and backward chaining rules in ART are similar to inductive reasoning or

bottom-up processing and deductive reasoning or top-down processing in cognitive skill

taxonomies, respectively. However, cognitive top-down and bottom-up processing are

more comprehensive than forward and backward chaining. Forward and backward

chaining follow relatively fixed, step-by-step procedures, while the cognitive top-

down/bottom-up approach is more reflective (e.g., Vygotsky, 1978). Viewpoint and

logical dependency in ART have no parallels in cognitive psychology. Although

interesting, this analysis did not lead to action as one would still have to create an expert

system with the shell to provide a human benchmarking test. Thus we turned to a specific

expert system, GATES.
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Table 7

A Parallel Analysis of ART Components and Cognitive Skills or Functions

ART Components Cognitive Skills or Functions

Fact Declarative Knowledge
an item of information

Schemata Scheme
collection of facts that represents a data structure for a cluster of concepts
ai, object or class of objects that about an objects, events, situations
share certain properties

Viewpoints No fit
a means of segregating data into
separate models of the situation
that an application is considering

Logical Dependencies No fit
the logic dependence of some
facts on other facts in a data base

Forward Chaining Bottom-Up Processing
the presence of certain facts concepts activated from a lower to a
allow reasoning to reach an higher order
appropriate conclusion

Backward Chaining Top-down Processing
the ability to reason from a concepts activated from a higher order to
desired conclusion in search of a lower order
the facts that might substantiate it

Expert system--GATES. GATES is an expert system written in Prolog for

gate assignment at TWA's JFK and St. Louis airport terminals (Brazile & Swigger, 1988;

1989). It is a production program with documentation and source code available. It was

chosen as a target system for our human benchmarking approach for two reasons. First,

the system has some features (e.g., monitoring functions) we are interested in for the

benchmarking evaluation of expert systems. Second, we have a good cooperative

relationship with the developers of the system. In this section we will provide a brief
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description of the system and an analysis of the correspondence between the system's

functions and Shalin et al.'s (1988) and Chandrasekaran's (1986) categories.

The GATES system. GATES is a constraint satisfaction expert system

developed to create TWA's monthly and daily gate assignments at Kennedy Airport.

Obtained from an experienced ground controller, the domain knowledge is represented in

Prolog predicates as well as several rule-like data 3tructures including permission rules (the

GATEOK predicate) and denial rules (the conflict predicate). These two kinds of rule

determine when a set of gates can or cannot be assigned to a particular ight.

The system uses the following procedures to produce monthly gate assignments:

1. Considering an unassigned flight that has the most constraints first (a set
of FLIGHT rules);

2. Selecting a particular gate for a particular flight by using a set of
GATEOK ru ,;s that have been arranged in some priority;

3. Verifying whether the gate assignment is correct by checking it against a
set of CONFLICT rules;

4. Making adjustments by relaxing constraints to have all flights assigned
gates;

5. After all assignments are made, adjusting assignments to maximize gate
utilization, minimize personnel workloads, maximize equipment
workload.

In summary, the GATES system monitors itself in these phases: (1) First phase:

uses all of the constraints; tries to schedule all the planes. With all the constraints in use,

only about 75% of the planes get scheduled. However, if successful, it quits. (2) Second

phase: relaxes the constraints so that all of the planes are scheduled. (3) Third phase:

puts back the constraints in an attempt to optimize the schedule. All phases recurse through

procedures 1, 2, and 3. Thus, procedures 1, 2, and 3 act as a kind of sub program or

subprocedure which is called during every phase of the program. Phase I recurses only

through procedures 1, 2, and 3. Phase 2 performs procedure 4, while it recurses through
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1, 2, and 3. Phase 3 performs procedure 5, while it recurses through 1, 2, and 3.

Because Prolog uses recursion, it's difficult to separate these into separate procedures.

Expert system-GATES. To bridge the above parallel analysis work with the

ART system, we asked one developer of the system (Dr. Swigger) to make a parallel

analysis of the GATES components and Shalin et al.'s and Chandrasekaran's expert

system categories. This analysis is summarized in Table 8.

Table 8
A Parallel Analysis of GATES Taxonomy and Expert System Function Classification

Function Classification GATES Function

Shalin et al.

Classification Classify input feature of plane type

Interpretation Infer the schedules given data about
plane type, and other descriptions

Design Configure better Schedule using
constraints of plane type, arriving and
departing times

Problem-solving and Planning Planning operators-two types of rules

Chandrasekaran

Hierarchical Classification No fit

Hypothesis Matching of Process the three passes by which the
Assessment system keeps refining its hypothesis and

produce a better schedule

Hierarchical Design by Plan Assign first flights and gates with the
Selection and Refinement most constraints, then relax constraints

to have more flights assigned

State Abstraction No fit
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Expert System Application of Human Benchmarking

Our expert system human benchmarking methodology consists of 11 steps from the

initial selection of an expert system to the final report documenting the process (see

Table 9). Following selection of an expert system, one would classify as to application.

The possible applications are diagnosis, monitoring, planning and scheduling. Then, one

would classify within a computer science taxonomy.

Table 9

Expert System Human Benchmarking Methodology

* Select expert system

* Classify as to application

* Classify within a computer science taxonomy
" Create Analogy

• Classify within a cognitive science taxonomy

* Select/develop measures of analogous functioning
" Select experimental design
* Run experimental studies with people
" Analyze statistically

• Use/create/norms
" Write report

Next, one creates an analogy, that is, the functioning of this computer software

within a computer science taxonomic classification is like the specific cognitive functioning

of humans. The analogous functioning is classified within a cognitive science taxonomy.

Then, one selects or develops both cognitive and affective measures of human functioning

on the task. Both process and outcomes are measured. Next, one selects an experimental
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design and runs the experiment studies. The data is statistically analyzed and one then uses

or creates norms. Finally, a report on the "intelligence" of the expert system is written.

The application of the general method to a specific case, i.e., "GATES" is shown in

Table 10. GATES was selected as the expert system for reasons mentioned earlier.

Table 10

Expert System Human Benchmarking Methodology for "GATES"

General Methodology Specific Example

* Select expert system GATES
• Classify as to application Scheduling
" Classify within computer science taxonomy TBDa

" Create Analogy Monitoring
* Classify within a cognitive science taxonomy Monitoring
* Select/develop measures of analogous functioning Thinking Questionnaire
" Select experimental design 2X2
" Run experimental studies with people Completed

• Analyze statistically TBD
" Use/create/norms TBD
" Report "intelligence" of expert system TBD

a TBD, To Be Done

It is classified as an scheduling system. Its computer science taxonomy is shown in Table

8. With respect to its analogy we consider monitoring in GATES to be like self monitoring

in people (see Figure 1). For the scheduling task, the system and people have the same

goal: to assign all landed flights to available gates. Both the system and people need to

follow the same constraints and rules to do the task. Following these restrictions, the

system monitors itself in the three phases of scheduling. People use the same constraints to

plan, monitor and assess ongoing processes of scheduling. However, people are aware of
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their ongoing processes while the system is not. We used an existing cognitive science

taxonomy to classify monitoring processes (see Table 6). As may be seen in Figure 2, we

then developed measures for both process (e.g., for people, a questionnaire on self-

monitoring) and outcome. Next, an experimental design was selected in which two

scheduling problems of two different difficulty levels were administered to junior college,

undergraduate, graduate students, and three experts who are airport ground controllers.

The experimental study has been run and thz data are being analyzed. Following extensive

experimental work, the creation of norms would then follow. Finally, a report on

"intelligence" of the expert system will be generated. These latter steps will be the subject

of an additional technical report.

GATES PERSON

Goals Strategies Goals Strategies Awareness

Gate Assignment Permission vs. Gate Assignment Planning

Conflict Rules Monitoring

Assessing

Figure 1. An analogy for human benchmarking of metacognition.
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Process Outcome

People a) Think-aloud protocol a) Number of correct gate

b) Metacognitive tests assignments

System a) Trace a) Number of correct gate

b) Categorized rules assignments

Figure 2. Process and outcome measures.

Summary

This document outlined our strategy for human benchmarking of expert systems.

We modified the human benchmarking methodology used for a natural language

understanding system, IRUS. The metacognitive skills literature was reviewed; however,

specific standardized, metacognitive tests were not found. By relating metacognitive

taxonomies and expert system taxonomies, we developed a general approach to facilitate

comparison. The expert system, GATES, matched our needs and was chosen as an

example for our development of human benchmarking methodology for expert systems.

The general methodology was developed and a specific example with GATES was

instantiated. Our next report will discuss the specific design and results of an experiment in

human benchmarking using GATES.
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